

CHP Case Studies / Business Case

In Partnership with the US DOE

Methane Recovery from Hog Waste Integrated with Combined Heat and Power Technologies

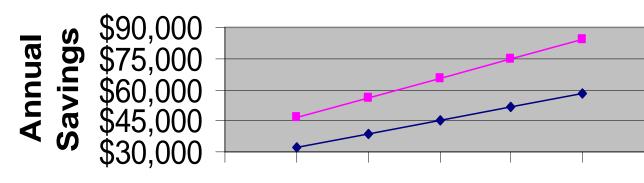
November 2004

Steffen Mueller

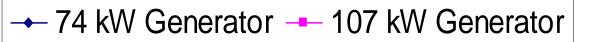
From Biogas to Btu

- 1000 Finish, or
- 5000 Sow Farrow to Wean
 - Both types of farms produce around 45,000 cubic feet of biogas per day
 - With a Methane content of between 55% and 80%
 - Farm produces between 25 and 36
 MMBtu per day or between 9,000 and 13,000 MMBtu per year

From Btu to kW


- Assume a Heat Rate of 14,000 Btu/kWh (24% efficient prime mover) such as a microturbine or recip. engine
- 25 MMBtu/day to 36 MMBtu/day can fuel prime movers of between 74 and 107 kW installed capacity
- A 74 to 107 kW generator produces:
 - between 1,700 and 2,500 kWh per day
 - between 53,000 and 77,000 kWh per month
 - Between 650,000 and 940,000 kWh per year

Electricity Savings


Annual Electricity Savings at Various Rates

0.04 0.05 0.06 0.07 0.08 0.09 0.1

Electricity Rate (\$/kWh)

Heat Recovery

Installed Capacity	Approximate Heat Recovery per Year	Required Fuel Equivalent (at 80% Boiler Efficiency) per Year	Savings from Heat Recovery @ \$5/MMBtu Gas Cost per Year	Savings from Heat Recovery @ \$7/MMBtu Gas Cost per Year
74 kW	2,700 MMBtu	3,400 MMBtu	\$17,000	\$23,700
107 kW	3,900 MMBtu	4,900 MMBtu	\$24,500	\$34,300

Total Savings Potential

- Approximate Savings Assuming
- Low Case:
 5 cent/kWh avoided
 electricity charges and
 \$5/MMBtu natural gas
 prices
- High Case:

 9 cents/kWh avoided
 electricity charges and
 \$7/MMBtu natural gas
 prices

Installed Capacity	Low Savings Case \$/Year	High Savings Case \$/Year
74 kW	49,400	82,000
107 kW	71,400	118,700

Installed Cost - Rules of Thumb

Reciprocating Engines <500kW

Recoverable Useful Heat: 4,000 to 5,000 Btu/h per kW

• O&M Costs: \$0.012 to \$0.015 per kWh

 Installed Costs: \$1,400 to \$1,800 per kW (with heat recovery)

Microturbines 30 to 400 kW

Recoverable Useful Heat: 6,000 – 7,000 Btu/h per kW

O&M Cost (per kWh) \$0.01 to \$0.015

• Installed Cost: \$1,000 to \$2,000 (with heat recovery)

System Paybacks – On Incremental CHP Facility Only

Capacity	Installed Cost	Yearly O&M Cost	Low Savings Case Years	High Savings Case Years
74 kW	\$120,000	\$8,500	2.9	1.6
107 kW	\$160,000	\$12,000	2.7	1.5

Case Study 1: Colorado Pork LLC

- 6,300 Sow Farrow to Wean
- Biogas Produced: 61,000 cf/day
- Anaerobic Digester with Biogas Recovery;
 Caterpillar 3306 engine
- Generating Capacity: 85 kW (operates at 60 kW)
- Thermal Heat Recovered: 2,200 MMBtu/Year (est.) hot water
- Heated Anaerobic Digester with CHP system installed in response to Amendment 14 regulations

Project Financials

Costs

Anaerobic Digester/Secondary Basin: \$149,000
Pumps, Valves, Meters: \$62,000
Engineering \$31,000
Total Heated Anaerobic Digester: \$242,000

85 kW Engine plus Generator:
CHP Plant Engineering:
Total Generating Facility Installed:

Total Digester + Generating Facility:
Alternative: Aerobic Digester:

\$388,000 \$100,000

\$115,000

\$146,000

\$31,000

Project Financials (cont'd)

Savings

From Lagoon Cleanout: \$10,000
From Electricity: \$39,000
Total Savings: \$49,000

Payback

Heated Anaerobic Digester Only:

Heated Anaerobic Digester+ Generating Facility:

Incremental Generating Facility Only:

14.2 Years

7.9 Years

Project Outcome

- The project shows a relatively attractive payback on capital investment
- Anaerobic digester with CHP facility assured compliance with Amendment 14 Regulations

Case Study 2: Afxantiou Farm in Cyprus

- 1,700 Sow Farrow to Finish Operation
- Anaerobic digester with biogas recovery and Caterpillar Model MCG310 engine with heat recovery
- Generating Capacity: 205 kW
- Biogas Produced: 85,000 cf/day
- Recoverable Heat: 7,665 MMBtu/Year
- Used Heat: 2,935 MMBtu/Year to meet digester heating requirements

Project Financials

Digester & Generating Equipment Cost:

Total Cost: \$1,380,000

Government Grant: \$ 500,000

Net Cost: \$ 880,000

Annual Savings:

Avoided Electricity: \$210,000

Avoided Gas: \$ 18,000

Total Savings: \$228,000

Estimated Simple Payback on Total Project:

Without Grant: 6.1 Years

With Grant: 3.9 Years

Project Outcome

- The incumbent utility company's electricity rates are relatively high at 15 ¢/kWh, which makes it more attractive to self-generate the farm's electricity needs. Excess electricity can be sold back to the utility company at 8.3 ¢/kWh
- Afxantiou Farm took advantage of available grant money. The government of Cyprus is providing a \$500,000 grant for the project
- Under Cyprus' recently imposed strict environmental regulations the Farm needed to install at least a lined basin for the animal waste, an unrecoverable capital expense. By opting for an anaerobic digester with a CHP system the Farm was able to able to:
 - comply with the regulations
 - while generating revenues

Case Study 3: Barham Farms

- 4,000 sow farrow-to-wean facility
- Biogas Produced: 19,200 cf/day
- Energy Plant Equipment: Inground unheated anaerobic digester
- Caterpillar Model 3406NA engine
- Generating Capacity: 120 kW (often operated at 90 kW)
- Thermal Heat Recovered: 3,150 MMBtu/Year

Project Outcome and Financials

- The 120kW engine / generator was significantly oversized for available biogas from the digester. As a result:
 - The standby tariff imposed on the CHP system was based on the rated capacity of 120kW, while the CHP unit was never operated at more than 60%
 - The low engine utilization factor (operating at well below the rated capacity) resulted in reduced system efficiencies
 - Result: Negative cash-flow
 - CHP system shut-down in 2004

Project Outcome and Financials (cont'd)

- In response to the problems incurred by Barham Farms, an analysis of the anaerobic digester / CHP system design was conducted by the CHP Application Program at North Carolina State University
- The study revealed that a properly designed 50kW CHP system would have provided a much better match between the digester and engine configuration
- This sized system would result in approximately \$38,000 per year savings on the farm's electric utility costs, providing a 6 year simple payback on the total investment

Case Study 4: Smithfield Foods/ Vestal Farms

- 10,000 Head Finishing Operation
- 100,000 gallons/day manure
- 30 kW Capstone Microturbine
- Biogas Produced: 45,000 cf/day
- Recovered Heat: 5,800 MMBtu/Year (estimated)

Financials

 Microturbine heat recovery equipment engineering:

\$120,000

Annual Projected
 Savings from recovered
 thermal energy:

\$ 46,250

 Estimated Incremental Payback on Microturbine Installation:

2.6 Years

Project Outcome

- The CHP system at Vestal Farm is very well matched to the thermal needs of the anaerobic digester
- The microturbine's thermal recovery is sufficient to maintain the heat at 95°F in the anaerobic digester for about 7 months of the year and at about 85°F during the winter months; minimal supplemental heat is provided by an additional burner during the winter months
- Facility is installed and tested. Operator is currently negotiating stand-by power contract with incumbent utility

In Summary

- Combined Anaerobic Digesters/CHP Systems installed have been shown to work across:
 - Different anaerobic digester technologies
 - Different climates
 - Different utility territories (with different buy-back rates and stand-by tariffs)
 - Different regulatory structures and manure management requirements
- If the AD/CHP System is
 - Properly designed
 - Installed

Maintained

